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Iterative techniques for solving the Boltzmann equation in the kinetic theory of 
gases yield expressions for the stress tensor and heat flux vector that are 
analogous to constitutive equations in continuum mechanics~ However, these 
expressions are not generally invariant under the Euclidean group of transforma- 
tions, whereas constitutive equations in continuum mechanics are usually re- 
quired to be by the principle of material frame indifference, This disparity in 
invariance propert!es has led some previous investigators to argue that Euclid- 
ean invariance should be discarded as a contraint on constitutive equations. It is 
proven mathematically in this paper that the results of the Chapman-Enskog 
iterative procedure have no direct bearing on this issue. In order to settle this 
question, it is necessary to examine mathematically the effect of superimposed 
rigid body rotations on solutions of the Boltzmann equation. A preliminary 
investigation along these lines is presented which suggests that the kinetic theory 
is consistent with material frame indifference in at least a strong approximate 
sense provided that the disparity in the time scales of the microscopic and 
macroscopic motions is extremely large--a condition which is usually a pre- 
requisite for the existence of constitutive equations. 

KEY WORDS: Kinetic theory; continuum mechanics; Chapman-Enskog 
method; Burnett equations; invariance properties; and material frame indif- 
ference. 

1. INTRODUCTION 

The Chapman-Enskog iterative procedure in the kinetic theory of gases, 
which has its origin around the turn of the century, represented the first 
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useful method for solving the Boltzmann equation by successive approxi- 
mations. In the first approximation the Euler equation is obtained, in the 
second approximation the Navier-Stokes equations are obtained, and in 
the third approximation the Burnett equations are obtained (cf., Chapman 
and Cowling (1)). Several decades later, alternative approaches such as the 
13-moment expansion of Grad (see Grad (2)) and the Maxwellian iteration 
(see Ikenberry and  Truesdell (3)) have been developed. All of these ap- 
proaches yield expressions for the stress tensor and heat flux vector that are 
analogous to constitutive equations in continuum mechanics. More specifi- 
cally, algebraic equations are obtained that tie the stress tensor and heat 
flux vector to the velocity and temperature fields as well as their time 
derivatives and spatial gradients. However, these expressions are not gener- 
ally invariant under the Euclidean group of transformations (i.e., under 
arbitrary time-dependent rotations and translations of the spatial frame of 
reference), whereas constitutive equations in continuum mechanics are 
usually required to be by the principle of material frame indifference. (4~ 
This disparity in invariance properties has led numerous investigators 
during the past decade to argue that the principle of material frame 
indifference should be discarded (see M/iller, (5) Edelen and McLennan, (6) 
S6derholm, (7) and Woods(8~). It should be noted at this point that the 
concept of material frame indifference (i.e., the Euclidean invariance of 
constitutive equations), which has its roots in the nineteenth century 
starting with Boussinesq, is tied to the physical idea that stress is associated 
exclusively with deformations and, hence, does not depend on the motion 
of the observer. Of course, the theory of elasticity, Navier-Stokes theory, 
and several other classical continuum theories satisfy this principle identi- 
cally. Furthermore, since the principle of material frame indifference places 
severe restrictions on the allowable form of constitutive equations, it has 
served as a useful tool in the development of modern continuum theories. 

The purpose of the present paper is to examine this question of 
invariance in the kinetic theory in more detail. A preliminary investigation 
along these lines was presented in Speziale. (9~ Here, it will be proven 
mathematically that the assumption in the Chapman-Enskog iterative 
procedure that time does not enter as an explicit argument in the expression 
for the local time rate of change of the macroscopic velocity is not closed 
with respect to Euclidean transformations. To be specific, if a given 
macroscopic process is a member of the Chapman-Enskog class, one which 
differs by an arbitrary time-dependent rotation will not be. This gives rise 
to the lack of Euclidean invariance in the Burnett approximation. However, 
as a result of the lack of closure and the fact that this assumption (which is 
part of what is usually termed as the hydrodynamic description) is not a 
rigorous consequence of the Boltzmann equation or the general mathemati- 
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cal structure of the kinetic theory, it is simply unrigorous to draw any direct 
physical conclusions about the resulting lack of Euclidean invariance. In 
order to resolve this question concerning the consistency of material frame 
indifference with the kinetic theory it is necessary to examine the physical 
consequences of this principle within the framework of continuum mechan- 
ics and compare with corresponding physical results that are derived 
directly from the Boltzmann equation. It will be demonstrated that in order 
to accomplish this task it is necessary to examine the effect of superimposed 
rigid body motions of the gas on solutions of the Boltzmann equation. This 
is necessary since the main physical consequence of material frame indiffer- 
ence within the framework of continuum mechanics is that it forbids the 
values of the stress tensor and heat flux vector to be altered by a superim- 
posed rigid body motion of the material. It will be shown that provided the 
disparity in the time scales of the microscopic and macroscopic motions is 
extremely large (as is usually the case in continuum mechanics) the kinetic 
theory of gases is consistent with material frame indifference in at least a 
strong approximate sense. Furthermore, it will also be shown that while 
there is cause to question the general consistency of material frame indiffer- 
ence with the kinetic theory (this doubt arises for different reasons than 
those presented by the authors mentioned above), nothing final can be 
proven at this time because of the lack of exact solutions to the Boltzmann 
equation. 

2. EUCLIDEAN INVARIANCE IN CONTINUUM MECHANICS 
AND THE KINETIC THEORY 

In continuum mechanics, the governing field equations are those for 
the conservation of mass, linear momentum, angular momentum, and 
energy which are given by (cf., Truesdell and Noll (4)) 

+ (0vk) = 0 (1)  

OTkt 
06~ = Ox----~ + ob~ (2) 

= (3 )  

~vt 3qk 
0?: = Tk, 3x k 3x~ + oh (4) 

where p is the mass density, v is the velocity field, T is the stress tensor, b is 
the external body force per unit mass, c is the internal energy per unit mass, 
q is the heat flux vector, and h is the energy supply per unit mass. In (2) 
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and (4), a superposed dot denotes the material time derivative, and the 
Einstein summation convention applies to repeated indices. Furthermore, 
by the symmetry of the stress tensor in (3) we have restricted our attention 
to nonpolar continua for which there are no body couples or couple 
stresses. The system of equations (1)-(4) are not closed and must be 
supplemented with constitutive equations for T, q, and e which represent a 
mathematical description of the material properties. These constitutive 
equations for thermomechanical materials require that the stress, heat flux, 
and internal energy at any material point be functionals in the history of 
the motion and temperature of all points of the material. O) For many 
important applications, these general constitutive equations reduce to the 
algebraic form mentioned earlier. Constitutive equations are usually subject 
to the restrictions that arise from the second law of thermodynamics and 
from material frame indifference. The latter constraint requires that they be 
form invariant under the Euclidean group of transformations, i.e., constitu- 
tive equations for T, q, and ~ must tranform as 

T* = QTQ T, q* = Qq, r = c (5) 

for any two motions which differ by the Euclidean group of transforma- 
tions 

x* = Q(t)x + d(t), t* = t + a (6) 

where a is an arbitrary constant, d(t) is an arbitrary time-dependent vector, 
and Q(t) is an arbitrary time-dependent proper orthogonal tensor so that 

QQT = QTQ = I, IQI = 1 (7) 

In (5) and (7), the superscript T denotes the transpose, whereas in (7) I 
denotes the unit tensor and ]-] denotes the determinant. The Euclidean 
group of transformations, which consist of arbitrary time-dependent rota- 
tions and translations of the spatial frame of reference and shifts in the 
origin of time, represent the most general change of frame (or observer) in 
Euclidean space. 

The continuum theory described above is complete. By completeness, 
it is meant that the domain of the stress, heat flux, and internal energy are 
formed of all possible motion and temperature histories (see Wang (10)). As 
a consequence of (5) and completeness, the violation of material frame 
indifference leads to a situation where the values of the stress tensor and the 
heat flux vector can be altered by a rigid body motion of the material. ~ 
Within the axiomatic framework of continuum mechanics, the main physi- 
cal consequence of material frame indifference is that it forbids such an 
occurrence. 
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The kinetic theory of gases is based on a statistical description con- 
trolled by the phase density function f(x, c, t) where the position vector x 
and molecular velocity c forms a six-dimensional space referred to as the 
phase space. From the phase density function, various macroscopic fields 
are definable, e.g., the number density and macroscopic velocity field are 
given by 

n(x, t) = fscf(x, c, t) d3c (8) 

v(x, t) = _ln fsc cf(x' c, t) d3c (9) 

where S C is the space of all molecular velocities. The fluctuating velocity u, 
also referred to as the peculiar velocity, is defined as follows: 

c = v + u ( 1 0 )  

Making use of the fluctuating velocity the stress tensor, heat flux vector, 
and internal energy density are, respectively, defined by 

Tk~ = -- m f&uku: f d3c (1 1) 

m f~ uukfd3c (12) q ~ = - ~  u. 
c 

& 

where m is the molecular mass (the macroscopic mass density P = mn). The 
absolute temperature 0 is given by 

0 = ~m s u. ufd3c (14) 
& 

where k is the Boltzmann constant. Here, it should be noted that as a direct 
consequence of (11)-(14), T, q, ~, and 0 are frame-indifferent tensors. (9) 
Furthermore, in the kinetic theory the internal energy density is identically 
given by 

3 k 0 (15) 
~=gm 

For a slightly rarefied monatomic gas, the phase density function is 
determined from the Boltzmann equation which takes the form 

.o: o: (:,:, . 
8~ ~ + bk - f f  ) l e -  e la2ad3e (16) 

JS~JSs 

where f, j~ f ' ,  and jh are, respectively, the values of the phase density 
corresponding to the arguments e, ~, c', and E', and d2~2 is the differential 
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cross section of molecular encounters which depends on the molecular 
model considered. Here, we are considering only binary collisions where a 
molecule with velocity c and a molecule with velocity r collide and then 

as sume  the new velocities c' and ~', respectively, which are related by the 
laws of conservation of linear momentum and energy. (1) Balance laws for 
mass, linear momentum, and energy are obtained by taking moments of the 
Boltzmann equation with m, me, and mc . c ,  respectivelyJ t) These equa- 
tions are identical to the balance laws of continuum mechanics with one 
exception--the energy equation has no energy supply h. As a result of the 
absence of an energy supply, the kinetic theory is not complete, i.e., the 
domain of the stress tensor, heat flux vector, and internal energy density 
are not formed of all possible motion and temperature histories. There are 
some motion and temperature histories that are incompatible with (4) when 
h - - 0  and hence do not correspond to any solution of the Boltzmann 
equation.(10) 

Various iterative procedures for solving the Boltzmann equation such 
as the Chapman-Enskog method and the Maxwellian iteration yield ex- 
pressions for the stress and heat flux that are analogous to constitutive 
equations in continuum mechanics. In the first approximation, these ap- 
proaches yield the Euler equation with a zero heat flux, while in the second 
approximation, Navier-Stokes theory and the Fourier law for heat conduc- 
tion are obtained. The first and second approximations are form invariant 
under the Euclidean group of transformations and, hence, satisfy the 
principle of material frame indifference. The third approximation for the 
Chapman-Enskog method yields the Burnett equations. These equations 
are not invariant under the Euclidean group of transformations. (5-8~ The 
significance of this lack of Euclidean invariance will now be examined. 

The Chapman-Enskog iterative procedure is based on the assumption 
that the phase density function f and the partial derivatives with respect to 
time of the number density n, absolute temperature 0, and macroscopic 
velocity v are implicit functions of time only through n, 0, v, and their 
spatial gradients, i.e., 

f=Ol(x ,c ,n ,  V n , . . . , O ,  VO . . . . .  v, V v , . . . )  ( i7) 

~n--~2(x,n,  V n , . .  0, V0, . v, Vv . . . .  ) (18) 
~t ' '  "" ' 

OO-r~3(x,n, Vn . . . .  0, V0, . .  v, V v , . . . )  (19) 
0t ' " ' 

Vn . . . .  0, v 0 ,  . .  v, V v , . . . )  (20) 
Ot ' " ' 

Equations (17)-(20) constitute what is commonly referred to as the hydro- 
dynamic description. In Speziale, (9) it was demonstrated that there exist a 
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wide variety of functions q~l, (/)2, and  q)3 for which equations (17)-(19) are 
form invariant  under  the Euclidean group of t ransformations (6). However,  
no such function q~4 exists which is, in general, Euclidean invariant. This 
can be seen by a direct analysis of the Euclidean t ransformation of (20) 
which is of the form (9) 

av~ 
at* - QkldP4t(x*'n*' V ' n * ,  . . . , 0", V*O*, . . . , v*, V 'v* ,  . . . Q , Q , d , d )  

-]-Qkl[ Oml�9 + Oml(Xm - din)-- Pml~lrn l 

. .  �9 av~ 
-- QlmOnm(Xn dn) + "[-aklOml(Xm dm)"]- d k - ~ - / ,  [ ' * - dl] (21)  

At a. part icular instant of time, I~ and d can be varied independent ly  of Q, 
Q, d, and  d and, consequently,  (21) will be an explicit function of time in 
contradict ion of the C h a p m a n - E n s k o g  hydrodynamic  assumption. For  
example, we can take 

cost(t) 
Q(t )  = - s in~( t )  

0 

~( t )  = t ( t -  t0)2~, 

s in+( t )  0 

cos+ ( t )  0 
0 1 

~(t)  = t ( t -  t0)2t~ 
(22) 

where/3  is any constant  vector and a is any constant.  Then, at time t o we 
have 

Q(t0) = I, O(t0) = 0 (23) 

0 2at  o 0 

(~( to) = - 2a t  o 0 0 

0 0 0 

(24) 

d(to) = 0, /~(to) = 0, ii(to) = 2tot~ (25) 

where I is the unit tensor. The substitution of (23)-(25) into (21) yields 

av* [ ~ = t o = . 4 ( x . , n . , V . n .  ' 0", V*0*, v*, V 'v* ,  )It=to 
at* " " " ' " " " ' " " " ' 

- 2toa • x* + 2t0/] (26) 

where a = ae~' and e~' is a unit vector in the x~' direction�9 Hence, no matter  
what  choice is made  for the funct ion 04,  Eq. (26) will be an explicit 
funct ion of time in violation of the C h a p m a n - E n s k o g  hydrodynamic  
assumption.  It is thus clear that  the C h a p m a n - E n s k o g  iterative technique is 
not  closed with respect to Euclidean transformations (i.e., arbi trary time- 
dependent  superimposed rigid body  motions)�9 To be more specific, if a 
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given macroscopic process is a member of the Chapman-Enskog class, 
then one which differs by an arbitrary time-dependent superimposed rigid 
body motion will not be. Since a general Euclidean transformation takes us 
outside of the Chapman-Enskog class, the lack of Euclidean invariance of 
results obtained from this technique is of no physical consequence in and of 
itself. This can be illustrated by the following simple example: the Bernoulli 
equation 

p + �89 2 = const (27) 

for the steady irrotational flow of an inviscid and incompressible fluid in 
the absence of body forces. Equation (27) is not form invariant under a 
Galitean transformation. However, this is of no physical consequence since 
(27) is not closed with respect to the Galilean transformations (i.e., the 
Galilean transformation of a steady flow is not in general steady) and, 
hence, a Galilean transformation takes us outside of its domain of applica- 
bility. The use of the lack of Euclidean invariance of results obtained from 
the Chapman-Enskog iterative procedure as the sole argument against 
material frame indifference is thus tantamount to the following fallacious 
argument: the Bernoulli equation (27), an equation with both empirical and 
theoretical confirmation, is not form invariant under the Galilean group of 
transformations; thus Galilean invariance cannot be a general principle of 
classical physics. 

As alluded to earlier, the main physical consequence of material frame 
indifference is that it forbids the values of the stress tensor and heat flux 
vector to be altered by a rigid body motion of the material. Here, unlike in 
continuum mechanics, there can be a difference between a change of 
observer (for which the stress and heat flux are invariant) and a superim- 
posed rigid body motion as a result of the way in which the body force 
appears in the Boltzmann equation. Thus, to begin to address this question 
concerning the consistency of the kinetic theory with material frame 
indifference, the effect of rigid body motions on solutions of the Boltzmann 
equation must be determined. This can be accomplished by utilizing the 
Euclidean transformation of the Boltzman equation which takes the form 
(see Wang (ll)) 

= . . - _ 

where 
�9 ~ " . 

b~ = b~ + 2OklQmlC m + 2OklOml(X m - din) 

- 2 G ,  Q,.,i m + " * QktQmt(Xm - din) + d~ (29) 
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and 

b~ = Q~,b l (30) 

since forces are frame independent objects. Hence, it is clear that the 
Boltzmann equation is not form invariant under the Euclidean group of 
transformations. Its invariance group is no more than the Galilean group of 
transformations 

x* = R x  + V t  + C (31)  

(where R is any constant proper orthogonal tensor and V and C are 
constant vectors) since under (31) we have 

0 = Q = 0, ~J = 0 (32) 

and, thus, the apparent forces on the right-hand side of (29) vanish leaving 
b * =  b*. Despite the fact that the invariance group of the Boltzmann 
equation is no more than the Galilean group, it would be a mistake to 
conclude that the same is true of constitutive equations. Constitutive 
equations represent, at best, special solutions to the Boltzmann equation. It 
is a well established fact that special solutions can have a different 
invariance group. 

In order to simplify matters we will first consider the case of changes 
of frame that differ by an arbitrary time-dependent translation. For this 
case, 

(~ = Q = 0 (33) 

and, thus, the Boltzmann equation (28) takes the form 

of* of* or* + (b: + dk) oF Ox k ~-Oc~ = C [ f * ]  (34) 

where C denotes the collision operator. Hence, if an additional body force 
b~ is applied in (34) so that 

b~ = - d  (35) 

then it is clear that f* = f and therefore 

n* = n, O* = 0 (36) 

O* = O, c* = e + d ,  v* = v + d (37)  

= = , *  = ( 3 8 )  

Equations (35)-(38) have the following physical interpretation: If an arbi- 
trary time-dependent rigid body translation is superimposed on a given 
macroscopic motion and temperature history, the values of the stress tensor, 
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heat flux vector, and internal energy density are left unaffected. Further- 
more, this rigid body translation is achieved by constructing the same 
process in a translating., frame of reference in which an additional body 
force of the amount - d  is applied. These results are completely identical 
with those obtained from continuum mechanics where the principle of 
material frame indifference is invoked. The kinetic theory of gases is 
therefore consistent with material frame indifference in so far as time- 
dependent translational accelerations of the spatial frame of reference are 
concerned. Consequently, the kinetic theory suggests that the invariance 
group for constitutive equations should be at least as much as the extended 
Galilean group of transformations 

x* = Rx + d(t) (39) 

where R is any constant proper orthogonal tensor. Interestingly enough, 
results obtained from the Chapman-Enskog iterative procedure do exhibit 
invariance under (39). This results from the fact that the term containing 
in (21) is spatially homogeneous. (9) 

Now, we will consider the case of pure time-dependent rotations of the 
spatial frame of reference for which there is a problem. When material 
frame indifference is invoked, the field equations of continuum mechanics 
(1), (2), and (4) take the noninertial form 

oo* o(o*v[) 
8t - - -7 + axJ  - 0  (40) 

OT~*I p , [  b k + " , .. , = - -  QktQm,)Xm] (41) p*i3ff Ox• + * 2Pk'Qmtvm + (2Q~,Oml + 

~v? ~q?~ 
p*~* = T~*~ 8xff Ox~ + p ' h *  (42) 

where 

x~ = Qk t ( t ) x t  (43) 

b~ = Qkz(t)bl  (44) 

Equations (40)-(42) imply that a superimposed rigid body rotation can be 
obtained by constructing the same process in a rotating frame of reference 
where an additional body force b] is applied in (41) which is given by 

(b])  k = - 2Ok/On/fro - (2O.k, Qml + Ok, Qm, )Xm (45) 

Then, of course, as a result of material frame indifference the values of the 
stress tensor, heat flux vector, and internal energy density will be unaf- 
fected. However, the Boltzmann equation of the kinetic theory appears to 
be inconsistent with this result�9 To be specific, the Boltzmann equation in a 
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rotating frame of reference in which an additional body force given by (45) 
is applied takes the form 

0f* +c~ 0f* ~ " , Ot* * ~ + b~ + 2Qk, Q,,,(c m - v*) Of* 
OXk k * Ock 

= (  ( (f*'f'*' - f*f*)l~*- c*ld2~* d3~ * (46) 
JS~.*JS~* 

and, thus, is not of the same form as (16) because of the presence of the 
unbalanced molecular Coriolis term 

�9 * - ( 4 7 )  2QI~,Qml(C m V,m) Of* 

Hence, in general, (46) may have solutions such that 

f* 4: f,  0* v e 0, v* v ~ Qv + Ox (48) 

and 

T* :# QTQ r, q* v ~ Qq, e* v ~ E (49) 

It is thus clear that there is a fundamental difference between the kinetic 
theory of gases and continuum mechanics in so far as superimposed rigid 
rotations are concerned. Since the unbalanced molecular Coriolis term (47) 
has no analogous expression in continuum mechanics it does give reason to 
question the general validity of material frame indifference. However, to 
rigorously prove that material frame indifference is inconsistent with the 
kinetic theory of gases it is necessary to show that (46) has a solution where 

but 

0* = 0, v* = Q v  + Q x  ( 5 0 )  

T* # QTQ T, q* ~ Qq (51) 

Presently, it is not possible to resolve this question since no general 
solutions to the Boltzmann equation are known which give rise to solutions 
of the form (50) (i.e., solutions that differ by an arbitrary time-dependent 
rigid body rotation). Furthermore, if such solutions do exist they are 
probably rare because of the lack of completeness as a l ludedto in Trues- 
dell.(12) Equations (46)-(49) merely demonstrate that the kinetic theory can 
give rise to inertial effects which have a different structure than those in 
continuum mechanics where material frame indifference is invoked�9 While 
this gives reason to question the general consistency of material frame 
indifference with the kinetic theory it does not represent conclusive evi- 
dence. 



468 Speziale 

Although it is not presently possible to decisively resolve this issue 
concerning material frame indifference in the kinetic theory, it will now be 
demonstrated that this principle is in strong approximate agreement with 
the Boltzmann equation provided that the disparity in the time scales 
between the microscopic and macroscopic motions is extremely large--a 
situation which is usually the case in continuum mechanics. Equation (46) 
will be nondimensionalized as follows in order to accomplish this task: 

f +  _ f* c + _ C'to x + _ x* 
 ax' t o '  to 

t + = t - -  u + _ U ' t o  

to lo 

(52) 

Of + +c~ + 0f + t~ L 0~+ 0f + 
or+ to Oc; 

to .~+~+ + Of + 
+ 2 ~oo ~k, ~z~rnll2m OCt- - -  C + [ f + ] (54) 

where, in this case, the validity of the analysis is not dependent on the 
precise structure of the collision operator. Hence, if 

to 
T0 << 1 (55) 

then the unbalanced molecular Coriolis term on the left-hand side of (54) 
will have a negligible effect and results derived from the Boltzmann 
equation will be in at least strong approximate agreement with material 
frame indifference. For example, if we consider the case of hydrogen at 

where l 0 and t o are, respectively, the characteristic length and time scales 
associated with the microscopic motion (e.g., a mean free path and a mean 
free time). The body force per unit mass b* and the rotation tensors Q and 
Q are external inputs which are specified independent of the molecular 
structure of the gas. Consequently, they should be nondimensionalized with 
respect to a macroscopic length scale L 0 and a macroscopic time scale T o. 
Hence, we will introduce the dimensionless quantities 

b + - b'T~ Q+ = 0 T  o, Q+ = Q (53) 
L0 ' 

By the judicious choice of t o, l o, T o, and L o, the dimensionless quantities in 
(52) and (53) can be made of order unity. The substitution of equations (52) 
and (53) into the Boltzmann equation (46) yields the dimensionless equa- 
tion 
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standard temperature and pressure, the mean free time is 6.6 • 10-11 sec. 
We will examine the case where the gas is subjected to a steady rigid body 
rotation with centrifugal effects suppressed by the imposition of an external 
body force field. This type of example, in the presence of a radial tempera- 
ture gradient, has been utilized by various authors to refute material 
frame indifference. (5'7) For such a case, the macroscopic time scale can be 
taken to be 1/~2 where ~2 is the angular velocity of the gas (this will 
guarantee that Q § is of order unity). Then, if we take the microscopic time 
scale to be a mean free time and restrict our attention to angular velocities 
f~ < 10 6 rad /sec  (an enormously rapid rotation), it is clear that 

to 
- -  < 1 0  - 6  

T0 
and the unbalanced Coriolis term would have a negligible effect. Material 
frame indifference would then be valid in a strong approximate sense. 

3. C O N C L U S I O N  

It has been proven mathematically that results obtained from the 
Chapman-Enskog iterative procedure are not closed with respect to Euclid- 
ean transformations and, hence, if a given macroscopic process is a 
member of the Chapman-Enskog class, one which differs by an arbitrary 
superimposed rigid body motion will not be. Thus, results obtained from 
the Chapman-Enskog method cannot have a direct bearing on the princi- 
ple of material frame indifference since this principle deals with Euclidean 
transformations and a Euclidean transformation can take one outside of 
the domain of validity of the method. In order to resolve this question, the 
effect of superimposed rigid body motions on solutions of the Boltzmann 
equation was examined and comparisons were made with continuum 
mechanics where such motions can have no effect on the stress tensor and 
heat flux vector when material frame indifference is invoked. It was found 
that with regard to superimposed translational accelerations of the gas, the 
kinetic theory is in support of the principle of material frame indifference 
and, thus, the invariance group of constitutive equations should be at least 
the extended Galilean group. However, there is reason to question the 
general consistency of the kinetic theory with material frame indifference 
when time-dependent rotations are included. This doubt arises from the 
presence of an unbalanced molecular Coriolis term which has no analog in 
continuum mechanics. Although it was not possible to resolve this question 
in full generality at this time because of the lack of exact solutions to the 
Boltzmann equation, it was proven that provided the disparity in the time 
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scales between the microscopic and macroscopic motions is extremely 
large, the kinetic theory is in agreement with material frame indifference in 
at least a strong approximate sense. 

The very existence of constitutive equations in the classical continuum 
mechanics sense where there is no dependence on initial or boundary 
conditions and the response of the material is local, requires that the 
disparity in the time and length scales associated with the microscopic and 
macroscopic motions be large. Hence, within the axiomatic framework of 
classical continuum mechanics (and for kinetic theory models with suffi- 
ciently small mean free times), it appears that the Boltzmann equation 
supports the imposition of material frame indifference as an axiom since 
they are consistent to within the same close approximation. In fact, when 
two disparate theories of nature such as the kinetic theory and continuum 
mechanics are applied to the same phenomenon, it is simply ridiculous to 
expect them to be in any more than strong approximate agreement. 
However, in recent years, continuum mechanics has been broadened to 
include the description of large scale nonlocal effects (cf., Edelen et  al. (t3) 

and Eringen (14)) where there can be an internal characteristic length (i.e., a 
microscale) which is much larger in comparison to the geometrical scale of 
the continuum than in the classical theories. Such theories could begin to 
approach the case of a highly rarefied gas where the microscale (e.g., the 
mean free path) can be of the order of the geometrical scale of the gas. The 
results of this paper indicate that for such a case there are reasons to 
question the validity of a continuum theory (if it could be applied) where 
material frame indifference is invoked. Future research will be required to 
resolve this issue with complete certainty. 
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